NEW AUREOLIC ACID ANTIBIOTICS II. STRUCTURE DETERMINATION

MITSUO KOENUMA, YOHKO YOSHIMURA, KOICHI MATSUMOTO and Yoshihiro Terui

Shionogi Research Laboratories, Shionogi & Co., Ltd., Fukushima-ku, Osaka 553, Japan

(Received for publication May 29, 1987)

Structure determination using NMR spectroscopy of new aureolic acid analogues, demethylchromomycins A_2 and A_3 and demethylolivomycins A and B produced by *Streptomyces aburaviensis* PA-39856, is described.

The preceding paper¹⁾ reported the isolation of new aureolic acid analogues produced by *Strepto-myces aburaviensis* PA-39856. The present report clarifies the structures of the new analogues named demethylchromomycins A_2 and A_3 (1 and 2) and demethylolivomycins A and B (3 and 4).¹⁾

Detailed NMR studies^{2~4)} on aureolic acid analogues, chromomycins A₂ and A₃ (5 and 6) and olivomycins A and B (7 and 8),^{5,6)} led to the assignments of the ¹H and ¹³C signals confirming the structures of the known analogues. As shown in Fig. 1, the known analogues, 5, 6, 7 and 8, had two methoxy groups. One of them belonged to aglycon and the other to the α -D-chromose A (*i.e.*, α -D-olivomose) unit of the disaccharide moiety. The ¹³C and ¹H signals were assigned.²⁾ The new analogues, however, had only a single methoxy group,¹⁾ which exhibited an ¹H or ¹³C signal corresponding to the methoxy group of the aglycon²⁾: $\delta_{\pi} 3.52 \sim 3.53$ (s) and $\delta_0 59.4 \sim 59.5$ (q). This indicated that the new analogues did not have the sugar unit, 2,6-dideoxy-4-O-methyl-D-*lyxo*-hexopyranose (*i.e.*, D-chromose A or D-olivomose) in the saccharide moiety, but they did retain the acyl groups (*i.e.*, isobutyryl and/or acetyl groups). Molecules, **1**, **2**, **3** and **4** could be characterized from the differences in composition of the known antibiotics, **5**, **6**, **7** and **8**. These findings suggested that the new antibiotics might be demethyl analogues of the known antibiotics, with respect to the methoxy group of the D-chromose A unit. ¹³C Data support this supposition; data for **1**, **2**, **3** and **4** are listed in Table 1 together with those²⁾ for the known analogues.

The ¹³C data of **1** are identical with that of **5**, except for some signals ascribable to the new unit in question (see Table 1). The identical ¹³C signal behavior found for the aglycon moiety, trisaccharide moiety and inner component of the disaccharide moiety clearly indicates that the structural difference between **1** and **5** is in an outer unit of the disaccharide moiety (see Fig. 1). The ¹³C signals²⁾ observed for the outer unit of **5** were δ 96.0 (d), 33.3 (t), 66.7 (d), 82.1 (d), 67.7 (d), 17.2 (q) and 62.1 (q), in accordance with the carbon number (see Fig. 1), while those of **1** are δ 96.0 (d), 32.5 (t), 66.0 (d), 71.5 (d), 67.2 (d) and 16.9 (q). The composition of the signals indicates that the new unit is also 2,6-dideoxyhexopyranose, although it lacks the methoxy signal. Accompanying the disappearance of the methoxy signal, δ 62.1 (q), significant shifts were found for the corresponding carbon signals, except for the anomeric carbon signal, δ 96.0 (d). Since demethylation of the methoxy group is known to cause a large upfield shift of the carbon directly connected to the group and small shifts on neighboring car-

VOL. XLI NO. 1

Table 1. 13 C Chemical shifts^a of demethylchromomycins A_2 and A_3 , demethylolivomycins A and B, and related analogues.

	1	5	2	6	3	7	4	8
Aglycon		· · · · · · · · · · · · · · · · · · ·					. <u>,</u>	
C-1	202.8	202.9	202.7	202.7	202.8	202.9	202.9	202.9
C-2	77.0	77.0	77.0	77.0	77.0	76.8	76.9	76.9
C-3	43.4	43.4	43.4	43.4	43.1	43.1	43.1	43.1
C-4	27.3	27.3	27.3	27.3	27.4	27.4	27.4	27.4
C-5	101.8	101.8	101.7	101.6	103.4	103.4	103.4	103.4
C-6	160.1	160.1	160.0	160.0	161.2	161.2	161.2	161.1
C-7	112.1	112.1	112.0	111.9	102.4	102.4	102.4	102.4
C-8	165.8	165.8	165.7	165.8	166.2	166.0	166.0	166.0
C-9	156.6	156.6	156.5	156.6	160.0	159.9	159.9	159.9
C-10	117.4	117.5	117.5	117.4	117.3	117.3	117.4	117.4
C-4a	135.5	135.5	135.4	135.4	136.9	136.9	136.9	136.9
C-8a	108.6	108.6	108.5	108.6	108.7 ^b	108.6 ^b	108.6 ^b	108.6 ^b
C-9a	108.6	108.6	108.5	108.6	109.0ъ	108.8 ^b	108.8 ^b	108.8 ^b
C-10a	139.0	139.0	138.9	138.9	141.3	141.3	141.3	141.3
7-CH ₃	8.3	8.3	8.3	8.3	_	_	_	
C-1′	82.4	82.1	82.4	82.4	82.2	82.1	82.2	82.1
C-2′	211.9	211.9	212.0	211.9	211.8	211.8	211.8	211.8
C-3'	79.1	79.1	79.1	79.0	79.1	79.1	79.1	79.1
C-4′	68.4	68.5	68.4	68.4	68.5	68.5	68.5	68.5
C-5'	19.8	19.8	19.8	19.9	19.8	19.8	19.8	19.8
1′-OCH₃	59.5	59.5	59.5	59.5	59.4	59.4	59.4	59.4
D-Chromose D								
C-1	98.0	98.0	97.9	97.9	97.7	97.6	97.6	97.6
C-2	33.5	33.5	33.5	33.3	33.4	33.3	33.4	33.4
C-3	70.8	70.8	70.7	70.6	70.9	70.9	70.9	70.9
C-4	68.4	68.4	68.4	68.3	68.4	68.4	68.3	68.4
C-5	70.3	70.3	70.2	70.2	70.2	70.2	70.2	70.2
C-6	16.9	16.9	17.0	16.9	16.8	16.8	16.8	16.8
$CH_{3}CO$	20.7	20.7	20.7	20.7	20.7	20.7	20.7	20.7
$CH_{3}CO$	171.7	171.7	171.7	171.7	171.7	171.6	171.7	171.7
D-Chromose A ^e								
(D-Olivose) ^d				07.0			05.0	06.1
C-1	96.0	96.0	95.8	95.8	96.0	96.1	95.9	96.1
C-2	32.5	33.3	32.5	33.3	32.4	53.3	32.4	33.3 66.6
C-3	00.0 71 5	00.7	00.0 71 A	00.0 92 1	71 4	00.0 90.1	71 4	82 1
C-4	67.2	02.1 67 7	67.3	67.6	67.7	67.5	67.2	67.6
C-6	16.9	17.2	17.0	17.2	16.9	17.2	16.9	17.2
OCH.		62.1		62.1		62.1		62.1
D-Chromose C								
C-1	101.0	101.0	101.0	101.0	101.0	101.0	100.9	101.0
C-2	37.8	37.8	37.8	37.8	37.7	37.7	37.7	37.7
C-3	81.8	81.8	81.8	81.9	81.7	81.7	81.7	81.7
C-4	75.8	75.8	75.8	75.8	75.8	75.8	75.8	75.8
C-5	72.7	72.7	72.7	72.7	72.7	72.7	72.6	72.7
C-6	18.2	18.2	18.2	18.1	18.2	18.2	18.2	18.2
D-Chromose C'						~~ ~	~~ -	~~
C-1	99.7	99.8	99.8	99.8	99.7	99.7	99.7	99.7
C-2	37.3	57.2	57.2	37.2	37.2	31.2	31.2	31.2
C-3	10.3 75 6	10.5	10.3	10.4 75 5	10.5	10.5	10.2 75 5	/0.1 75 5
C-4 C-5	72 0	73.0	72 0	72 0	72 0	72 0	72 0	72 0
C-6	17.9	18.0	17.9	18.0	17.9	17.9	17.9	17.9

THE JOURNAL OF ANTIBIOTICS

Table 1. (Communed)												
	1	5	2	6	3	7	4	8				
L-Chromose B												
C-1	96.1	96.0	96.0	96.1	96.0	96.0	95.9	95.7				
C-2	44.2	44.2	44.0	44.0	44.1	44.1	44.0	44.0				
C-3	70.8	70.8	70.7	70.6	70.8	70.7	70.6	70.6				
C-4	79.5	79.5	79.8	79.8	79.4	79.4	79.8	79.8				
C-5	67.2	67.2	67.1	67.1	67.1	67.1	67.1	67.1				
C-6	17.9	17.9	17.8	17.9	17.9	17.8	17.8	17.8				
$3-CH_3$	23.1	23.1	23.0	23.0	23.0	23.0	23.0	23.0				
$C\mathrm{H}_{\mathtt{s}}\mathrm{C}$	19.0	19.1	20.9	20.9	19.0	19.0	20.9	20.9				
CH_3CHCO	34.7	34.8			34.7	34.7						
CO	177.7	177.7	171.7	171.6	177.7	177.6	171.6	171.6				

Table 1. (Continued)

^a For measurement conditions, see the Experimental section.

^b May be interchanged in each vertical column.

• Available for the known analogues, 5, 6, 7 and 8.

^d Available for the new analogues, 1, 2, 3 and 4.

Fig. 1. Structure of demethylchromomycins A_2 and A_3 , demethylolivomycins A and B, and related analogues.

bons,⁷⁾ our supposition is supported by the data. The identical δ value of the anomeric carbon found between 1 and 5 and that of carbons belonging to the inner unit (*i.e.*, β -D-chromose D unit) indicate that 1 and 5 have similar situations around the interglycoside linkage of the disaccharide²⁾; *i.e.*, the new sugar unit also belongs to the 2,6-dideoxy- α -D-series and is connected to the inner unit with an

THE JOURNAL OF ANTIBIOTICS

 $\alpha, 1 \rightarrow 3$ -bond. A small shift, $\Delta \delta = -0.8$, found on the C-2 carbon of the outer unit is ascribable to the difference in the substituent having an axial orientation on the C-4 (*i.e.*, OH in 1 or OCH₃ in 5). When the configuration of the substituent on the C-4 is changed, a marked downfield shift should be caused on the C-2 carbon.⁸⁾ A marked upfield shift would occur on the anomeric carbon (C-1), when the configuration of the substituent on the C-3 or C-5 carbon is changed.⁸⁾ The shift behavior observed for the C-1 and C-2 carbons of the outer unit indicates retention of the configuration seen in 5. Thus, we concluded that the new sugar unit is 2,6-dideoxy- α -D-lyxo-hexopyranose. The sugar, 2,6-dideoxy-D-lyxo-hexopyranose (*i.e.*, D-oliose), is known to be a component of the saccharide moiety of aureolic acid (mithramycin A).⁹⁾

Next, the ¹³C signals of 2, 3 and 4 were compared with those of 6, 7 and 8, respectively. Each of the cases show shift behavior quite similar to that found in the comparison between 1 and 5 (see Table 1). This indicates that 2, 3 and 4 are also demethyl analogues of 6, 7 and 8, respectively. Relative configurations in the outer sugar unit (*i.e.*, α -D-oliose unit) were confirmed by the vicinal coupling constants, ${}^{3}J_{\text{H,H}}$ values, observable in 400 MHz ¹H spectra. For example, the ¹H data in CDCl₃ at 24°C on the α -D-oliose unit of 2 was: 5.14 (*J*=2.5 and 2.0, 1-H), 1.75~1.79 (m, 2-H_{eq} and 2-H_{ax}), ~4.00 (m, 3-H), 3.64 (*J*=2.5 and 0.8, 4-H), 3.93 (*J*=0.8 and 6.8, 5-H), 1.27 (*J*=6.8, 6-H, *i.e.*, 5-CH₃). The *J* values are in Hz.

Thus, the structures of the new analogues were concluded to be those shown in Fig. 1.

Experimental

Descriptions of the materials used are reported in the preceding paper.¹⁾

¹³C NMR spectral data were recorded with a Varian XL-100-12 spectrometer operating at 25.160 MHz. A mixed solvent system, $CDCl_{3} - CD_{3}OH$ (2:1), and an internal reference, TMS, were used in the measurements. The concentration and temperature used were *ca*. 140 mg/ml and 60°C, respectively. The observational error for δ values based on the digital resolution was *ca*. ± 0.1 ppm.

¹H NMR data were recorded with a Varian XL-100-12 spectrometer operating at 100.058 MHz and with XL-400 spectrometer operating at 399.948 MHz. The temperature used for the 100 MHz ¹H measurements¹⁾ and that for the 400 MHz ¹H measurement were 30°C and 24°C, respectively. Concentrations were *ca*. 10 mg/ml. Digital resolutions were *ca*. 0.3 Hz.

References

- KOENUMA, M.; N. UCHIDA, K. YAMAGUCHI, Y. KAWAMURA & K. MATSUMOTO: New aureolic acid antibiotics. I. Screening, isolation, characterization and biological properties. J. Antibiotics 41: 45~52, 1988
- YOSHIMURA, Y.; M. KOENUMA, K. MATSUMOTO, K. TORI & Y. TERUI: NMR studies of chromomycins, olivomycins, and their derivatives. J. Antibiotics 41: 53~67, 1988
- THIEM, J. & B. MEYER: Studies on the structure of chromomycin A₃ by ¹H and ¹³C nuclear magnetic resonance spectroscopy. J. Chem. Soc. Perkin Trans. II 1979: 1331 ~ 1336, 1979
- 4) THIEM, J. & B. MEYER: Studies on the structure of olivomycin A and mithramycin by ¹H and ¹³C nuclear magnetic resonance spectroscopy. Tetrahedron 37: 551 ~ 558, 1981
- BERLIN, YU A.; S. E. EPIPOV, M. N. KOLOSOV & M. M. SHEMYAKIN: The structure of the olivomycinchromomycin antibiotics (1). Tetrahedron Lett. 1966: 1643~1647, 1966
- 6) MIYAMOTO, M.; Y. KAWAMATSU, K. KAWASHIMA, M. SHINOHARA, K. TANAKA, S. TATSUOKA & K. NAKA-NISHI: Chromomycin A₂, A₃, and A₄. Tetrahedron 23: 421~437, 1967
- 7) STOTHERS, J. B.: Carbon-13 NMR Spectroscopy. Eds., A. T. BLOMQUIST & H. WASSERMAN, p. 461, Academic Press, New York, New York, 1976
- BEIERBECK, H. & J. K. SAUNDERS: A reinterpretation of beta, gamma, and delta substituent effect on ¹³C chemical shift. Can. J. Chem. 54: 2985~2995, 1976

9) BAKHAEVA, G. P.; YU. A. BERLIN, E. F. BOLDYREVA, O. A. CHUPRONOVA, M. N. KOLOSOV, V. S. SOIFER, T. E. VASILJEVA & I. V. YARTSEVA: The structure of aureolic acid (mithramycin). Tetrahedron Lett. 1968: 3595~3598, 1968